Mutations induced by the integration of a Mu gem2ts mutant prophage can revert at frequencies around 1 x 10(-6), more than 10(4)-fold higher than that obtained with Mu wild-type. Several aspects characterize Mu gem2ts precise excision: (i) the phage transposase is not involved; (ii) the RecA protein is not necessary; and (iii) revertants remain lysogenic with the prophage inserted elsewhere in the host genome. In addition, prophage re-integration seems to be non-randomly distributed, whereas Mu insertion into the host genome is a transposition event without any sequence specificity. In this paper, we describe that the site of re-integration somehow depends on the original site of insertion. Two alternative models are proposed to explain the strong correlation between donor and receptor sites.
Reversal of Mu gem2ts-induced mutations
Ghelardini P;
1995
Abstract
Mutations induced by the integration of a Mu gem2ts mutant prophage can revert at frequencies around 1 x 10(-6), more than 10(4)-fold higher than that obtained with Mu wild-type. Several aspects characterize Mu gem2ts precise excision: (i) the phage transposase is not involved; (ii) the RecA protein is not necessary; and (iii) revertants remain lysogenic with the prophage inserted elsewhere in the host genome. In addition, prophage re-integration seems to be non-randomly distributed, whereas Mu insertion into the host genome is a transposition event without any sequence specificity. In this paper, we describe that the site of re-integration somehow depends on the original site of insertion. Two alternative models are proposed to explain the strong correlation between donor and receptor sites.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.