Kinesins are microtubule-dependent molecular motors involved in intracellular transport and mitosis. Here, we report the cloning, sequencing, mapping, and expression of a novel member of the kinesin superfamily, The sequence of this newly identified human cDNA reveals an open reading frame encoding a putative protein of 792 residues. Based on its high sequence similarity to the kinesin-like molecule KIF3B, we named this protein KIF3C. KIF3C is encoded by transcripts that are distinct from the KIF3B mRNA in human, rat, and mouse and is preferentially expressed in the brain, Fluorescence in situ hybridization reveals that, in the human genome, the KIF3C gene maps to chromosome 2 at 2p23. The sequence of KIF3C predicts an unusually long insertion in the proximity of L11, a region thought to mediate microtubule binding. Taken together, these findings suggest that KIF3C is a novel kinesin-like protein that might be specifically involved in microtubule-based transport in neuronal cells. (C) 1998 Academic Press.

KIF3C, a novel member of the kinesin superfamily: Sequence, expression, and mapping to human chromosome 2 at 2p23

Navone F;
1998

Abstract

Kinesins are microtubule-dependent molecular motors involved in intracellular transport and mitosis. Here, we report the cloning, sequencing, mapping, and expression of a novel member of the kinesin superfamily, The sequence of this newly identified human cDNA reveals an open reading frame encoding a putative protein of 792 residues. Based on its high sequence similarity to the kinesin-like molecule KIF3B, we named this protein KIF3C. KIF3C is encoded by transcripts that are distinct from the KIF3B mRNA in human, rat, and mouse and is preferentially expressed in the brain, Fluorescence in situ hybridization reveals that, in the human genome, the KIF3C gene maps to chromosome 2 at 2p23. The sequence of KIF3C predicts an unusually long insertion in the proximity of L11, a region thought to mediate microtubule binding. Taken together, these findings suggest that KIF3C is a novel kinesin-like protein that might be specifically involved in microtubule-based transport in neuronal cells. (C) 1998 Academic Press.
1998
Istituto di Neuroscienze - IN -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/277780
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact