We present an extensive analysis of transport properties in superdiffusive twodimensional quenched random media, obtained by packing disks with radii distributed according to a Lévy law. We consider transport and scaling properties in samples packed with two different procedures, at fixed filling fraction and at self-similar packing, and we clarify the role of the two procedures in the superdiffusive effects. Using the behavior of the filling fraction in finite size systems as the main geometrical parameter, we define an effective Lévy exponent that correctly estimates the finite size effects. The effective Lévy exponent rules the dynamical scaling of the main transport properties and identifies the region where superdiffusive effects can be detected. © 2014 American Physical Society.
Superdiffusion and transport in two-dimensional systems with Lévy-like quenched disorder
Vezzani A
2014
Abstract
We present an extensive analysis of transport properties in superdiffusive twodimensional quenched random media, obtained by packing disks with radii distributed according to a Lévy law. We consider transport and scaling properties in samples packed with two different procedures, at fixed filling fraction and at self-similar packing, and we clarify the role of the two procedures in the superdiffusive effects. Using the behavior of the filling fraction in finite size systems as the main geometrical parameter, we define an effective Lévy exponent that correctly estimates the finite size effects. The effective Lévy exponent rules the dynamical scaling of the main transport properties and identifies the region where superdiffusive effects can be detected. © 2014 American Physical Society.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


