Graphene sheets encapsulated between hexagonal boron nitride (hBN) slabs display superb electronic properties due to very limited scattering from extrinsic disorder sources such as Coulomb impurities and corrugations. Such samples are therefore expected to be ideal platforms for highly tunable low-loss plasmonics in a wide spectral range. In this article we present a theory of collective electron density oscillations in a graphene sheet encapsulated between two hBN semi-infinite slabs (hBN/G/hBN). Graphene plasmons hybridize with hBN optical phonons forming hybrid plasmon-phonon modes. We focus on scattering of these modes against graphene's acoustic phonons and hBN optical phonons, two sources of scattering that are expected to play a key role in hBN/G/hBN stacks. We find that at room temperature the scattering against graphene's acoustic phonons is the dominant limiting factor for hBN/G/hBN stacks, yielding theoretical inverse damping ratios of hybrid plasmon-phonon modes of the order of 50-60, with a weak dependence on carrier density and a strong dependence on illumination frequency. We confirm that the plasmon lifetime is not directly correlated with the mobility: In fact, it can be anticorrelated.

Plasmon losses due to electron-phonon scattering: The case of graphene encapsulated in hexagonal boron nitride

Carrega M;Polini M
2014

Abstract

Graphene sheets encapsulated between hexagonal boron nitride (hBN) slabs display superb electronic properties due to very limited scattering from extrinsic disorder sources such as Coulomb impurities and corrugations. Such samples are therefore expected to be ideal platforms for highly tunable low-loss plasmonics in a wide spectral range. In this article we present a theory of collective electron density oscillations in a graphene sheet encapsulated between two hBN semi-infinite slabs (hBN/G/hBN). Graphene plasmons hybridize with hBN optical phonons forming hybrid plasmon-phonon modes. We focus on scattering of these modes against graphene's acoustic phonons and hBN optical phonons, two sources of scattering that are expected to play a key role in hBN/G/hBN stacks. We find that at room temperature the scattering against graphene's acoustic phonons is the dominant limiting factor for hBN/G/hBN stacks, yielding theoretical inverse damping ratios of hybrid plasmon-phonon modes of the order of 50-60, with a weak dependence on carrier density and a strong dependence on illumination frequency. We confirm that the plasmon lifetime is not directly correlated with the mobility: In fact, it can be anticorrelated.
2014
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Istituto Nanoscienze - NANO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/278049
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 90
  • ???jsp.display-item.citation.isi??? ND
social impact