We present a theory of topological edge states in one-dimensional resonant photonic crystals with compoundunit cell.We demonstrate how the structure, despite being one-dimensional, can be characterized by topologicalindices.Contrary to conventional electronic topological states the modes under consideration are radiative,i.e., they decay in time due to the light escape through the structure boundaries. We demonstrate that theedge states survive despite radiative decay and can be detected both in time- and frequency-dependent lightreflection.

Radiative topological states in one-dimensional resonant photonic crystals

Laura Pilozzi;
2014

Abstract

We present a theory of topological edge states in one-dimensional resonant photonic crystals with compoundunit cell.We demonstrate how the structure, despite being one-dimensional, can be characterized by topologicalindices.Contrary to conventional electronic topological states the modes under consideration are radiative,i.e., they decay in time due to the light escape through the structure boundaries. We demonstrate that theedge states survive despite radiative decay and can be detected both in time- and frequency-dependent lightreflection.
2014
Istituto dei Sistemi Complessi - ISC
978-2-9545460-2-5
resonant topological insulators
File in questo prodotto:
File Dimensione Formato  
prod_319683-doc_96093.pdf

accesso aperto

Descrizione: Program
Tipologia: Altro materiale allegato
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF Visualizza/Apri
prod_319683-doc_96094.pdf

accesso aperto

Descrizione: Copertina
Tipologia: Altro materiale allegato
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 79.33 kB
Formato Adobe PDF
79.33 kB Adobe PDF Visualizza/Apri
prod_319683-doc_96095.pdf

accesso aperto

Descrizione: Abstract_esteso
Tipologia: Abstract
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 88.62 kB
Formato Adobe PDF
88.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/278259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact