We study the thermodynamical properties of an ideal gas of non-Abelian Chern-Simons particles and we compute the second virial coefficient, considering the effect of general soft-core boundary conditions for the two-body wavefunction at zero distance. The behaviour of the second virial coefficient is studied as a function of the Chern-Simons coupling, the isospin quantum number and the hard-core parameters. Expressions for the main thermodynamical quantities at the lower order of the virial expansion are also obtained: we find that at this order the relation between the internal energy and the pressure is the same found (exactly) for 2D Bose and Fermi ideal gases. A discussion of the comparison of obtained findings with available results in literature for systems of hard-core non-Abelian Chern-Simons particles is also supplied. (C) 2012 Elsevier B.V. All rights reserved.

Statistical mechanics of an ideal gas of non-Abelian anyons

Trombettoni Andrea;Mussardo Giuseppe
2013

Abstract

We study the thermodynamical properties of an ideal gas of non-Abelian Chern-Simons particles and we compute the second virial coefficient, considering the effect of general soft-core boundary conditions for the two-body wavefunction at zero distance. The behaviour of the second virial coefficient is studied as a function of the Chern-Simons coupling, the isospin quantum number and the hard-core parameters. Expressions for the main thermodynamical quantities at the lower order of the virial expansion are also obtained: we find that at this order the relation between the internal energy and the pressure is the same found (exactly) for 2D Bose and Fermi ideal gases. A discussion of the comparison of obtained findings with available results in literature for systems of hard-core non-Abelian Chern-Simons particles is also supplied. (C) 2012 Elsevier B.V. All rights reserved.
2013
Istituto Officina dei Materiali - IOM -
High energy physics
Condensed matter physics
Fractional statistics
Anyon thermodynamics
Chern-Simons theory
Virial expansion
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/278412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 12
social impact