We report an extensive numerical study of a charged colloidal system with competing short-range depletion attraction and long-range electrostatic repulsion. By analyzing the cluster properties, we identify two distinct regions in the phase diagram: a state composed of stable finite-size clusters, whose relative interactions are dominated by long-range repulsion, and a percolating network. Both states are found to dynamically arrest at low temperatures, providing evidence of the existence of two distinct non-ergodic states in these systems: a Wigner glass of clusters and a gel.

Colloidal systems with competing interactions: from an arrested repulsive cluster phase to a gel

Sciortino Francesco;Zaccarelli Emanuela
2009

Abstract

We report an extensive numerical study of a charged colloidal system with competing short-range depletion attraction and long-range electrostatic repulsion. By analyzing the cluster properties, we identify two distinct regions in the phase diagram: a state composed of stable finite-size clusters, whose relative interactions are dominated by long-range repulsion, and a percolating network. Both states are found to dynamically arrest at low temperatures, providing evidence of the existence of two distinct non-ergodic states in these systems: a Wigner glass of clusters and a gel.
2009
Istituto dei Sistemi Complessi - ISC
INFM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/278479
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 157
  • ???jsp.display-item.citation.isi??? 154
social impact