Composite CdSe: poly(3-methylthiophene) (P3MT) nanoparticles have been synthesized via polymerization of 3-methylthiophene (3MT) in the presence of CdSe particles of nanorod or dot-like morphology and dispersed in the poly(3-hexylthiophene) (P3HT) matrix. The effect of the P3MT layer to mediate charge and energy transfer between CdSe and P3HT in the ternary nanocomposite system has been studied using electronic absorption, photoluminescence spectroscopy, and current-voltage measurements. The energy level diagram of the composite system has been deduced based on optical and electrochemical data of the separate components of the system. The contribution of the low- and high-molecular fractions of P3MT to control the charge transfer in order to optimize the intermediary role of P3MT is analyzed. Particularly, it was shown that excitation of the low-molecular P3MT leads to energy transfer to both CdSe and P3HT components, and it also serves as a barrier against recombination of electrons and holes separated at CdSe and P3HT, respectively. Thus, the role of the P3MT interlayer in assisting the charge separation and increasing an open-circuit voltage in the photovoltaic cell based on the ternary system is demonstrated. © Springer-Verlag 2012.

Tuning of the charge and energy transfer in ternary CdSe/poly(3- methylthiophene)/poly(3-hexylthiophene) nanocomposite system

Gigli G;
2012

Abstract

Composite CdSe: poly(3-methylthiophene) (P3MT) nanoparticles have been synthesized via polymerization of 3-methylthiophene (3MT) in the presence of CdSe particles of nanorod or dot-like morphology and dispersed in the poly(3-hexylthiophene) (P3HT) matrix. The effect of the P3MT layer to mediate charge and energy transfer between CdSe and P3HT in the ternary nanocomposite system has been studied using electronic absorption, photoluminescence spectroscopy, and current-voltage measurements. The energy level diagram of the composite system has been deduced based on optical and electrochemical data of the separate components of the system. The contribution of the low- and high-molecular fractions of P3MT to control the charge transfer in order to optimize the intermediary role of P3MT is analyzed. Particularly, it was shown that excitation of the low-molecular P3MT leads to energy transfer to both CdSe and P3HT components, and it also serves as a barrier against recombination of electrons and holes separated at CdSe and P3HT, respectively. Thus, the role of the P3MT interlayer in assisting the charge separation and increasing an open-circuit voltage in the photovoltaic cell based on the ternary system is demonstrated. © Springer-Verlag 2012.
2012
Istituto Nanoscienze - NANO
Cdse nanoparticle
Charge transfer
Energy transfer
Hybrid composite nanoparticles
Interlayer
Poly(3-hexylthiophene)
Poly(3-methylthiophene)
Ternary composite
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/278566
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact