The evolution of the Internet, distributed architectures, and Grid-oriented frameworks can change the way people acquire and disseminate both knowledge and experience, thus the way they learn. Therefore, one can envisage new e-learning models, based on a more efficient users' interaction, that also empowers the hands-on experience. This will improve learning outcomes, while reducing the need of physical devices and removing the inherent boundaries. Moreover, this reduces costs by promoting the sharing of resources and learning assets. From this perspective, the chapter discusses the integration of classical e-learning paradigms with new advancements of distributed computing, such as: 1) the usage of Peer-to-Peer (P2P) to produce network-independent overlays, also by enabling direct student-to-student exchanges; 2) the integration, through grid-based middleware, of real or virtual devices, plants and Sensors Network (SN) within the e-learning environment; and 3) the adoption of a distributed e-learning system to spread culture through mobile devices, with an emphasis on satellite communications.
Enhancement of e-Learning Systems and Methodologies through Advancements in Distributed Computing Technologies
Luca Caviglione;
2012
Abstract
The evolution of the Internet, distributed architectures, and Grid-oriented frameworks can change the way people acquire and disseminate both knowledge and experience, thus the way they learn. Therefore, one can envisage new e-learning models, based on a more efficient users' interaction, that also empowers the hands-on experience. This will improve learning outcomes, while reducing the need of physical devices and removing the inherent boundaries. Moreover, this reduces costs by promoting the sharing of resources and learning assets. From this perspective, the chapter discusses the integration of classical e-learning paradigms with new advancements of distributed computing, such as: 1) the usage of Peer-to-Peer (P2P) to produce network-independent overlays, also by enabling direct student-to-student exchanges; 2) the integration, through grid-based middleware, of real or virtual devices, plants and Sensors Network (SN) within the e-learning environment; and 3) the adoption of a distributed e-learning system to spread culture through mobile devices, with an emphasis on satellite communications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.