In this study, the time dynamics of the monthly means of the snow cover have been on Lebanese Mountain Chains from 2000 to 2012, derived from the MODIS Aqua/Terra satellite snow products was analyzed. This represents the longest satellite-based snow cover time series produced for Lebanon so far. Field survey was also carried out over the last three years in order to measure the in-situ snow/water equivalent and depth in different localities. Analyzing the regime of the snow cover in Mount-Lebanon (Western Mountain Chains) region, it was found that: (i) snowmelt accounts for about 31% of the rivers and springs discharge in Lebanon; (ii) consecutive peaks in the snow cover time series, representing the change-point between accumulation phase and ablation phase are present in three different patterns (edged, non-edged and double peaked); (iii) the areal snow coverage has big diversity between different years; (iv) the annual periodicity represents the most statistically significant and predominant frequency of the series contributing for about the 40% of the total variance of the snow cover series; (v) the longterm trend, totally hidden by the more powerful yearly component and detected by using the singular spectrum analysis (SSA), accounts for about the 33% of the total variance of the series; (vi) the long-term trend shows an apparent cyclic behavior with an estimated period (interval between the two minima) of about nine years; (vii) the comparison of the long-term trend with the North Atlantic Oscillation (NAO) monthly index reveals that the minima in 2009-2010 of the SSA long-term component coincides with a persistent negative phase in the NAO Index. (C) 2014 Elsevier BM. All rights reserved.

Characterization of the time dynamics of monthly satellite snow cover data on Mountain Chains in Lebanon

Telesca;Sc;
2014

Abstract

In this study, the time dynamics of the monthly means of the snow cover have been on Lebanese Mountain Chains from 2000 to 2012, derived from the MODIS Aqua/Terra satellite snow products was analyzed. This represents the longest satellite-based snow cover time series produced for Lebanon so far. Field survey was also carried out over the last three years in order to measure the in-situ snow/water equivalent and depth in different localities. Analyzing the regime of the snow cover in Mount-Lebanon (Western Mountain Chains) region, it was found that: (i) snowmelt accounts for about 31% of the rivers and springs discharge in Lebanon; (ii) consecutive peaks in the snow cover time series, representing the change-point between accumulation phase and ablation phase are present in three different patterns (edged, non-edged and double peaked); (iii) the areal snow coverage has big diversity between different years; (iv) the annual periodicity represents the most statistically significant and predominant frequency of the series contributing for about the 40% of the total variance of the snow cover series; (v) the longterm trend, totally hidden by the more powerful yearly component and detected by using the singular spectrum analysis (SSA), accounts for about the 33% of the total variance of the series; (vi) the long-term trend shows an apparent cyclic behavior with an estimated period (interval between the two minima) of about nine years; (vii) the comparison of the long-term trend with the North Atlantic Oscillation (NAO) monthly index reveals that the minima in 2009-2010 of the SSA long-term component coincides with a persistent negative phase in the NAO Index. (C) 2014 Elsevier BM. All rights reserved.
2014
Istituto di Metodologie per l'Analisi Ambientale - IMAA
Snowpack
Satellite image
SSA
Periodogram
Lebanon
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/278796
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 15
social impact