Tissue factor (TF) is a transmembrane glycoprotein, currently considered as being the major regulator of the coagulation cascade and the initiator of thrombogenesis in vivo. When TF comes in contact with blood, it forms a high-affinity complex with factors VII/VIIa, activating factors IX and X and thus leading to the formation of an insoluble fibrin clot. The regulation of TF-VIIa activity plays a key role in blood-vessel wall interactions. Selective patterns of cellular expression of TF are observed in tissues. TF is constitutively localized only on the surface of cells anatomically separated from the blood, where it plays an essential role in hemostasis by limiting hemorrhage after vessel wall injury. A number of pathophysiologic stimuli are capable of inducing TF transcription and activity in endothelial cells and monocytes. An aberrant TF expression in contact with blood is implicated in thrombotic complications of atherosclerosis, including acute myocardial infarction. Recent findings have demonstrated cell-derived microparticles containing TF in the circulating blood of patients with acute coronary syndromes, capable of triggering and propagating thrombus growth. This observation suggests a new view of thrombosis that does not necessarily require the exposure of vessel wall-derived TF at the site of vascular injury to initiate and propagate thrombosis.
Biologia e fisiopatologia del fattore tissutale e sua rilevanza per la patologia cardiovascolare.
Del Turco Serena;
2003
Abstract
Tissue factor (TF) is a transmembrane glycoprotein, currently considered as being the major regulator of the coagulation cascade and the initiator of thrombogenesis in vivo. When TF comes in contact with blood, it forms a high-affinity complex with factors VII/VIIa, activating factors IX and X and thus leading to the formation of an insoluble fibrin clot. The regulation of TF-VIIa activity plays a key role in blood-vessel wall interactions. Selective patterns of cellular expression of TF are observed in tissues. TF is constitutively localized only on the surface of cells anatomically separated from the blood, where it plays an essential role in hemostasis by limiting hemorrhage after vessel wall injury. A number of pathophysiologic stimuli are capable of inducing TF transcription and activity in endothelial cells and monocytes. An aberrant TF expression in contact with blood is implicated in thrombotic complications of atherosclerosis, including acute myocardial infarction. Recent findings have demonstrated cell-derived microparticles containing TF in the circulating blood of patients with acute coronary syndromes, capable of triggering and propagating thrombus growth. This observation suggests a new view of thrombosis that does not necessarily require the exposure of vessel wall-derived TF at the site of vascular injury to initiate and propagate thrombosis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.