We experimentally investigate the non-Gaussian features of the phase-randomized coherent states, a class of states exploited in communication channels and in decoy state-based quantum key distribution protocols. In particular, we reconstruct their phase-insensitive Wigner functions and quantify their non-Gaussianity. The measurements are performed in the mesoscopic photon-number domain by means of a direct detection scheme involving linear detectors. (C) 2012 Optical Society of America

Manipulating the non-Gaussianity of phase-randomized coherent states

Bondani Maria
2012

Abstract

We experimentally investigate the non-Gaussian features of the phase-randomized coherent states, a class of states exploited in communication channels and in decoy state-based quantum key distribution protocols. In particular, we reconstruct their phase-insensitive Wigner functions and quantify their non-Gaussianity. The measurements are performed in the mesoscopic photon-number domain by means of a direct detection scheme involving linear detectors. (C) 2012 Optical Society of America
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/279278
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact