The integration of atomic physics with quantum device technology contributed to the exploration of the field of single electron nanoelectronics originally developed in single electron quantum dots. Here the basic concepts of single electron nanoelectronics, including key aspects of architectures, quantum transport in silicon devices, single electron transistors, few atom devices, single charge/spin dynamics, and the role of valleys and bands are reviewed. Future applications in fundamental physics and classical and quantum information technologies are discussed, by highlighting the critical aspects which currently impose limits to the most advanced developments at the 10-nm node. © 2013 Springer Science+Business Media Dordrecht.

Single electron effects in silicon quantum devices

Prati E
2013

Abstract

The integration of atomic physics with quantum device technology contributed to the exploration of the field of single electron nanoelectronics originally developed in single electron quantum dots. Here the basic concepts of single electron nanoelectronics, including key aspects of architectures, quantum transport in silicon devices, single electron transistors, few atom devices, single charge/spin dynamics, and the role of valleys and bands are reviewed. Future applications in fundamental physics and classical and quantum information technologies are discussed, by highlighting the critical aspects which currently impose limits to the most advanced developments at the 10-nm node. © 2013 Springer Science+Business Media Dordrecht.
2013
Elemental semiconductors
Silicon nanoelectronics
Single electron transistor
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/279380
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact