The present work is dedicated to the use of Physarum polycephalum slime mold, an unicellular organism self-adapting, self-repairing and self-repellent, for the realization of elements for unconventional computational systems. Physarum continuously changes its shape under the influence of different stimuli like attractors (food in the most of cases) and repellents (light, temperature, humidity, chemicals), creating optimized networks. Here we introduced a new, softer, element able to influence the motion and the shape of Physarum: the DEFLECTOR. Physarum polycephalum, loaded with magnetic particles and placed under a magnetic field, is conditioned in its active zones routing and shape topology networks. Thus, slime mold can be used as particles carrier and, moreover, it is possible to deflect the mold movement and realize chemical composites in defined places what allows to consider Physarum as a simple version of bio-robot. On the other hand, we have realized the idea of creating networks with the varied conductivity with the slime mold on polyaniline (PANI) substrates. As the result, it was shown that Physarum growth results in the changing of the conductivity state of PANI layers in different ways, providing negative and positive patterning of the sample. The possibility to control mold's direction with a deflector together with the capability of Physarum to pattern PANI surfaces are the main points of this work. This paper opens new possibilities of the development in many fields and areas from the electrical circuit design and the bio-actuators (bio-) robot research, up to the unconventional computing and realization of a novel category of polymer-mold-modified.

Conductivity patterning with Physarum Polycephalum: natural growth and deflecting

Alice Dimonte;Franca Albertini;Victor Erokhin
2015

Abstract

The present work is dedicated to the use of Physarum polycephalum slime mold, an unicellular organism self-adapting, self-repairing and self-repellent, for the realization of elements for unconventional computational systems. Physarum continuously changes its shape under the influence of different stimuli like attractors (food in the most of cases) and repellents (light, temperature, humidity, chemicals), creating optimized networks. Here we introduced a new, softer, element able to influence the motion and the shape of Physarum: the DEFLECTOR. Physarum polycephalum, loaded with magnetic particles and placed under a magnetic field, is conditioned in its active zones routing and shape topology networks. Thus, slime mold can be used as particles carrier and, moreover, it is possible to deflect the mold movement and realize chemical composites in defined places what allows to consider Physarum as a simple version of bio-robot. On the other hand, we have realized the idea of creating networks with the varied conductivity with the slime mold on polyaniline (PANI) substrates. As the result, it was shown that Physarum growth results in the changing of the conductivity state of PANI layers in different ways, providing negative and positive patterning of the sample. The possibility to control mold's direction with a deflector together with the capability of Physarum to pattern PANI surfaces are the main points of this work. This paper opens new possibilities of the development in many fields and areas from the electrical circuit design and the bio-actuators (bio-) robot research, up to the unconventional computing and realization of a novel category of polymer-mold-modified.
2015
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Physarum polycephalum; deflector; magnetic particles; patterning; polyaniline
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/279445
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact