We use the density functional theory to demonstrate that the chemical reactivity of nitrogen atoms with a propagating zigzag edge during the nucleation of graphene grains can give rise to persistent sublattice symmetry breaking phenomena. Their effect on the electronic structure of a formed two-dimensional graphene sheet is studied by unfolding the bands obtained from large supercell calculations. We argue that the loss of inversion symmetry enhances the creation of a band gap when assisted by dopant agglomeration. At higher concentrations of graphitic nitrogen the conduction band gets strongly suppressed, paving the way for the use of nitrogen-doped graphene as a valley-filter component. © 2014 American Physical Society.

Origin and impact of sublattice symmetry breaking in nitrogen-doped graphene

Deretzis I;La Magna A
2014

Abstract

We use the density functional theory to demonstrate that the chemical reactivity of nitrogen atoms with a propagating zigzag edge during the nucleation of graphene grains can give rise to persistent sublattice symmetry breaking phenomena. Their effect on the electronic structure of a formed two-dimensional graphene sheet is studied by unfolding the bands obtained from large supercell calculations. We argue that the loss of inversion symmetry enhances the creation of a band gap when assisted by dopant agglomeration. At higher concentrations of graphitic nitrogen the conduction band gets strongly suppressed, paving the way for the use of nitrogen-doped graphene as a valley-filter component. © 2014 American Physical Society.
2014
Istituto per la Microelettronica e Microsistemi - IMM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/279487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact