The phenomenon of photoinduced molecular reorientation of absorbing nematic liquid crystals is analyzed in a macroscopic general framework and with a specific molecular model. The photoinduced torque responsible for the reorientation is shown to describe a transfer of angular momentum from the molecule center-of-mass degrees of freedom to the rotational ones, mediated by molecular friction. As a consequence, a photoinduced stress censor is predicted to develop together with the torque in the illuminated fluid. A molecular expression of the photoinduced torque is derived with a rigorous procedure, valid both for a pure material and for a dye-liquid-crystal mixture. This torque expression comets those reported in previous works on the same subject. The photoinduced torque is evaluated analytically in a simple approximate limit.

Photoinduced molecular reorientation of absorbing liquid crystals

Paparo D
1997

Abstract

The phenomenon of photoinduced molecular reorientation of absorbing nematic liquid crystals is analyzed in a macroscopic general framework and with a specific molecular model. The photoinduced torque responsible for the reorientation is shown to describe a transfer of angular momentum from the molecule center-of-mass degrees of freedom to the rotational ones, mediated by molecular friction. As a consequence, a photoinduced stress censor is predicted to develop together with the torque in the illuminated fluid. A molecular expression of the photoinduced torque is derived with a rigorous procedure, valid both for a pure material and for a dye-liquid-crystal mixture. This torque expression comets those reported in previous works on the same subject. The photoinduced torque is evaluated analytically in a simple approximate limit.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/279826
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 108
social impact