CdSe/CdS colloidal nanocrystals are members of a novel class of light-emitting nanoparticles with remarkable optical properties such as suppressed fluorescence blinking and enhanced emission from multiexciton states. These properties have been linked to the suppression of non-radiative Auger recombination. In this work we employ ultrafast spectroscopy techniques to identify optical signatures of neutral and charged excitonic and multiexcitonic states. We show that Auger recombination of biexcitons is not suppressed, while we observe optical gain and amplified spontaneous emission from multiexciton states and from long-lived charged-exciton states.

Charged excitons, Auger recombination and optical gain in CdSe/CdS nanocrystals

Bongiovanni Giovanni
2012

Abstract

CdSe/CdS colloidal nanocrystals are members of a novel class of light-emitting nanoparticles with remarkable optical properties such as suppressed fluorescence blinking and enhanced emission from multiexciton states. These properties have been linked to the suppression of non-radiative Auger recombination. In this work we employ ultrafast spectroscopy techniques to identify optical signatures of neutral and charged excitonic and multiexcitonic states. We show that Auger recombination of biexcitons is not suppressed, while we observe optical gain and amplified spontaneous emission from multiexciton states and from long-lived charged-exciton states.
2012
Istituto Officina dei Materiali - IOM -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/279861
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact