We report a high pressure Raman study of orthorhombic elemental sulfur from ambient pressure to approximate to 25GPa. Using a near infrared laser and low laser intensity on the scattering volume, we achieve off-resonant conditions up to larger pressures in comparison with previous studies. Raman spectra were recorded over the full spectral range including external (librational, translational) and internal (bond bending and bond stretching) modes. Drastic changes are observed as regards the peak frequencies, relative intensities and band splitting of degenerate modes. The main outcome of the present study is the observation of a structural transition at approximate to 16GPa manifested as slope changes of certain frequencies and sudden relative intensities changes. The present findings are discussed in the context of previous pressure Raman studies and comparison with existing X-ray diffraction as well as ab initio molecular dynamics results is attempted.

Elemental sulfur under high hydrostatic pressure. An up-to-date Raman study

Gorelli F A;Santoro M;
2013

Abstract

We report a high pressure Raman study of orthorhombic elemental sulfur from ambient pressure to approximate to 25GPa. Using a near infrared laser and low laser intensity on the scattering volume, we achieve off-resonant conditions up to larger pressures in comparison with previous studies. Raman spectra were recorded over the full spectral range including external (librational, translational) and internal (bond bending and bond stretching) modes. Drastic changes are observed as regards the peak frequencies, relative intensities and band splitting of degenerate modes. The main outcome of the present study is the observation of a structural transition at approximate to 16GPa manifested as slope changes of certain frequencies and sudden relative intensities changes. The present findings are discussed in the context of previous pressure Raman studies and comparison with existing X-ray diffraction as well as ab initio molecular dynamics results is attempted.
2013
elemental sulfur
high pressure
phase diagram
Raman scattering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/279896
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact