We report low-frequency high-resolution Raman spectroscopy and ab-initio calculations on dense lithium from 40 to 200 GPa at low temperatures. Our experimental results reveal rich first-order Raman activity in the metallic and semiconducting phases of lithium. The computed Raman frequencies are in excellent agreement with the measurements. Free energy calculations provide a quantitative description and physical explanation of the experimental phase diagram only when vibrational effect are correctly treated. The study underlines the importance of zero-point energy in determining the phase stability of compressed lithium.

Lattice Dynamics of Dense Lithium

Gorelli F A;Santoro M;
2012-01-01

Abstract

We report low-frequency high-resolution Raman spectroscopy and ab-initio calculations on dense lithium from 40 to 200 GPa at low temperatures. Our experimental results reveal rich first-order Raman activity in the metallic and semiconducting phases of lithium. The computed Raman frequencies are in excellent agreement with the measurements. Free energy calculations provide a quantitative description and physical explanation of the experimental phase diagram only when vibrational effect are correctly treated. The study underlines the importance of zero-point energy in determining the phase stability of compressed lithium.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/279931
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact