LISCA is an unsupervised algorithm aimed at assigning a quality score to each arc generated by a dependency parser in order to produce a decreasing ranking of arcs from correct to incorrect ones. LISCA exploits statistics about a set of linguistically-motivated and dependency-based features extracted from a large corpus of automatically parsed sentences and uses them to assign a quality score to each arc of a parsed sentence belonging to the same domain of the automatically parsed corpus. LISCA has been successfully tested on two datasets belonging to two different domains and in all experiments it turned out to outperform different baselines, thus showing to be able to reliably detect correct arcs also representing domain-specific peculiarities.

Linguistically-driven selection of correct arcs for dependency parsing

Dell'Orletta F;Venturi G;Montemagni S
2013

Abstract

LISCA is an unsupervised algorithm aimed at assigning a quality score to each arc generated by a dependency parser in order to produce a decreasing ranking of arcs from correct to incorrect ones. LISCA exploits statistics about a set of linguistically-motivated and dependency-based features extracted from a large corpus of automatically parsed sentences and uses them to assign a quality score to each arc of a parsed sentence belonging to the same domain of the automatically parsed corpus. LISCA has been successfully tested on two datasets belonging to two different domains and in all experiments it turned out to outperform different baselines, thus showing to be able to reliably detect correct arcs also representing domain-specific peculiarities.
Campo DC Valore Lingua
dc.authority.ancejournal COMPUTACIÓN Y SISTEMAS -
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC -
dc.authority.people Dell'Orletta F it
dc.authority.people Venturi G it
dc.authority.people Montemagni S it
dc.collection.id.s b3f88f24-048a-4e43-8ab1-6697b90e068e *
dc.collection.name 01.01 Articolo in rivista *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.date.accessioned 2024/02/21 05:07:17 -
dc.date.available 2024/02/21 05:07:17 -
dc.date.issued 2013 -
dc.description.abstracteng LISCA is an unsupervised algorithm aimed at assigning a quality score to each arc generated by a dependency parser in order to produce a decreasing ranking of arcs from correct to incorrect ones. LISCA exploits statistics about a set of linguistically-motivated and dependency-based features extracted from a large corpus of automatically parsed sentences and uses them to assign a quality score to each arc of a parsed sentence belonging to the same domain of the automatically parsed corpus. LISCA has been successfully tested on two datasets belonging to two different domains and in all experiments it turned out to outperform different baselines, thus showing to be able to reliably detect correct arcs also representing domain-specific peculiarities. -
dc.description.affiliations Istituto di Linguistica Computazionale Antonio Zampolli (ILC-CNR), ItaliaNLP Lab -www.italianlp.it, Pisa, Italy -
dc.description.allpeople Dell'Orletta, F; Venturi, G; Montemagni, S -
dc.description.allpeopleoriginal Dell'Orletta F.; Venturi G.; Montemagni S. -
dc.description.fulltext none en
dc.description.numberofauthors 3 -
dc.identifier.scopus 2-s2.0-84880882084 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/280032 -
dc.identifier.url http://cys.cic.ipn.mx/ojs/index.php/CyS/article/view/1517 -
dc.language.iso eng -
dc.relation.firstpage 125 -
dc.relation.issue 2 -
dc.relation.lastpage 136 -
dc.relation.volume 17 -
dc.subject.keywords Correct arcs -
dc.subject.keywords Dependency parsing -
dc.subject.singlekeyword Correct arcs *
dc.subject.singlekeyword Dependency parsing *
dc.title Linguistically-driven selection of correct arcs for dependency parsing en
dc.type.driver info:eu-repo/semantics/article -
dc.type.full 01 Contributo su Rivista::01.01 Articolo in rivista it
dc.type.miur 262 -
dc.type.referee Sì, ma tipo non specificato -
dc.ugov.descaux1 310619 -
iris.orcid.lastModifiedDate 2024/04/04 13:16:47 *
iris.orcid.lastModifiedMillisecond 1712229407355 *
iris.scopus.extIssued 2013 -
iris.scopus.extTitle Linguistically-driven selection of correct arcs for dependency parsing -
iris.sitodocente.maxattempts 1 -
scopus.authority.ancejournal COMPUTACIÓN Y SISTEMAS###1405-5546 *
scopus.category 1700 *
scopus.contributor.affiliation ItaliaNLP Lab -www.italianlp.it -
scopus.contributor.affiliation ItaliaNLP Lab -www.italianlp.it -
scopus.contributor.affiliation ItaliaNLP Lab -www.italianlp.it -
scopus.contributor.afid 60008941 -
scopus.contributor.afid 60008941 -
scopus.contributor.afid 60008941 -
scopus.contributor.auid 57540567000 -
scopus.contributor.auid 27568199800 -
scopus.contributor.auid 15056781100 -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.dptid 113765287 -
scopus.contributor.dptid 113765287 -
scopus.contributor.dptid 113765287 -
scopus.contributor.name Felice -
scopus.contributor.name Giulia -
scopus.contributor.name Simonetta -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale Antonio Zampolli (ILC-CNR); -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale Antonio Zampolli (ILC-CNR); -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale Antonio Zampolli (ILC-CNR); -
scopus.contributor.surname Dell'Orletta -
scopus.contributor.surname Venturi -
scopus.contributor.surname Montemagni -
scopus.date.issued 2013 *
scopus.description.abstracteng LISCA is an unsupervised algorithm aimed at assigning a quality score to each arc generated by a dependency parser in order to produce a decreasing ranking of arcs from correct to incorrect ones. LISCA exploits statistics about a set of linguistically-motivated and dependency-based features extracted from a large corpus of automatically parsed sentences and uses them to assign a quality score to each arc of a parsed sentence belonging to the same domain of the automatically parsed corpus. LISCA has been successfully tested on two datasets belonging to two different domains and in all experiments it turned out to outperform different baselines, thus showing to be able to reliably detect correct arcs also representing domain-specific peculiarities. *
scopus.description.allpeopleoriginal Dell'Orletta F.; Venturi G.; Montemagni S. *
scopus.differences scopus.subject.keywords *
scopus.document.type ar *
scopus.document.types ar *
scopus.identifier.pui 369457234 *
scopus.identifier.scopus 2-s2.0-84880882084 *
scopus.journal.sourceid 21100223167 *
scopus.language.iso eng *
scopus.relation.firstpage 125 *
scopus.relation.issue 2 *
scopus.relation.lastpage 136 *
scopus.relation.volume 17 *
scopus.subject.keywords Correct arcs; Dependency parsing; *
scopus.title Linguistically-driven selection of correct arcs for dependency parsing *
scopus.titleeng Linguistically-driven selection of correct arcs for dependency parsing *
Appare nelle tipologie: 01.01 Articolo in rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/280032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact