We demonstrate a common-path interferometer to measure the independent displacement of multiple targets through nonlinear frequency mixing in a quantum-cascade laser (QCL). The sensing system exploits the unique stability of QCLs under strong optical feedback to access the intrinsic nonlinearity of the active medium. The experimental results using an external dual cavity are in excellent agreement with the numerical simulations based on the Lang-Kobayashi equations. © 2014 Optical Society of America.
Qcl-based nonlinear sensing of independent targets dynamics
Mezzapesa Francesco Paolo;Columbo Lorenzo L;Brambilla Massimo;
2014
Abstract
We demonstrate a common-path interferometer to measure the independent displacement of multiple targets through nonlinear frequency mixing in a quantum-cascade laser (QCL). The sensing system exploits the unique stability of QCLs under strong optical feedback to access the intrinsic nonlinearity of the active medium. The experimental results using an external dual cavity are in excellent agreement with the numerical simulations based on the Lang-Kobayashi equations. © 2014 Optical Society of America.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.