The problem of inverse statistics (statistics of distances for which the signal fluctuations are larger than a certain threshold) in differentiable signals with power law spectrum, E(k) approximately k(-alpha), 3< or =alpha<5, is discussed. We show that for these signals, with random phases, exit-distance moments follow a bifractal distribution. We also investigate two dimensional turbulent flows in the direct cascade regime, which display a more complex behavior. We give numerical evidences that the inverse statistics of 2D turbulent flows is described by a multifractal probability distribution; i.e., the statistics of laminar events is not simply captured by the exponent alpha characterizing the spectrum.

Inverse statistics of smooth signals: the case of two dimensional turbulence.

Cencini M;Lanotte A;
2001

Abstract

The problem of inverse statistics (statistics of distances for which the signal fluctuations are larger than a certain threshold) in differentiable signals with power law spectrum, E(k) approximately k(-alpha), 3< or =alpha<5, is discussed. We show that for these signals, with random phases, exit-distance moments follow a bifractal distribution. We also investigate two dimensional turbulent flows in the direct cascade regime, which display a more complex behavior. We give numerical evidences that the inverse statistics of 2D turbulent flows is described by a multifractal probability distribution; i.e., the statistics of laminar events is not simply captured by the exponent alpha characterizing the spectrum.
2001
Istituto Applicazioni del Calcolo ''Mauro Picone''
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/280593
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact