The empty-level electronic structures of pyrimidine and its 2-chloro, 2-bromo, and 5-bromo derivatives have been studied with electron transmission spectroscopy (ETS) and dissociative electron attachment spectroscopy (DEAS) in the 0-5 eV energy range. The spectral features were assigned to the corresponding anion states with the support of theoretical calculations at the ab initio and density functional theory levels. The empty orbital energies obtained by simple Koopmans' theorem calculations, scaled with empirical equations, quantitatively reproduced the energies of vertical electron attachment to pi* and sigma* empty orbitals measured in the ET spectra and predicted vertical electron affinities close to zero for the three halo derivatives. The total anion currents of the halo derivatives, measured at the walls of the collision chamber as a function of the impact electron energy, presented intense maxima below 0.5 eV. The mass-selected spectra showed that, in this energy, range the total anion current is essentially due to halide fragment anions. The DEA cross sections of the bromo derivatives were found to be about six times larger than that of the chloro derivative. The absolute cross sections at incident electron energies close to zero were evaluated to be 10(-16)-10(-15) cm(2).

Temporary Anion States of Pyrimidine and Halopyrimidines

Bolognesi Paola;Avaldi Lorenzo
2011

Abstract

The empty-level electronic structures of pyrimidine and its 2-chloro, 2-bromo, and 5-bromo derivatives have been studied with electron transmission spectroscopy (ETS) and dissociative electron attachment spectroscopy (DEAS) in the 0-5 eV energy range. The spectral features were assigned to the corresponding anion states with the support of theoretical calculations at the ab initio and density functional theory levels. The empty orbital energies obtained by simple Koopmans' theorem calculations, scaled with empirical equations, quantitatively reproduced the energies of vertical electron attachment to pi* and sigma* empty orbitals measured in the ET spectra and predicted vertical electron affinities close to zero for the three halo derivatives. The total anion currents of the halo derivatives, measured at the walls of the collision chamber as a function of the impact electron energy, presented intense maxima below 0.5 eV. The mass-selected spectra showed that, in this energy, range the total anion current is essentially due to halide fragment anions. The DEA cross sections of the bromo derivatives were found to be about six times larger than that of the chloro derivative. The absolute cross sections at incident electron energies close to zero were evaluated to be 10(-16)-10(-15) cm(2).
2011
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/280927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact