A class of reactive Euler-type equations derived from the kinetic theory of chemical reactions is presented and a finite-volume scheme for such problem is developed. The proposed method is based on a flux-vector splitting approach and it is second-order in space and time. The final nonlinear problem coming from the discretization has a characteristic block diagonal structure that allows a decoupling in smaller subproblems. Finally, a set of numerical tests shows interesting behaviors in the evolution of the space-dependent fluid-dynamic fields driven by chemical reactions, not present in previous space homogeneous simulations.
An IMEX finite volume scheme for reactive Euler equations arising from kinetic theory
M Pennacchio
2003
Abstract
A class of reactive Euler-type equations derived from the kinetic theory of chemical reactions is presented and a finite-volume scheme for such problem is developed. The proposed method is based on a flux-vector splitting approach and it is second-order in space and time. The final nonlinear problem coming from the discretization has a characteristic block diagonal structure that allows a decoupling in smaller subproblems. Finally, a set of numerical tests shows interesting behaviors in the evolution of the space-dependent fluid-dynamic fields driven by chemical reactions, not present in previous space homogeneous simulations.File | Dimensione | Formato | |
---|---|---|---|
prod_64820-doc_59305.pdf
solo utenti autorizzati
Descrizione: An IMEX Finite Volume scheme for Reactive Euler Equations arising from Kinetic Theory
Dimensione
617.05 kB
Formato
Adobe PDF
|
617.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.