The development and characterization of a novel bioactive polymer based on the immobilization of glucose oxidase enzyme (GOx) in a polyvinyl alcohol (PVA) film showing antibacterial activity is presented. The PVA-GOx composite material was extensively characterized by UV-vis, X-ray Photoelectron (XPS) spectroscopy and by Fourier Transform Infrared (FTIR) spectroscopy to verify the preservation of enzyme structural integrity and activity. The antimicrobial activity of this composite material against Escherichia coli and Vibrio alginolyticus was assessed. Furthermore the lysozyme-like activity of PVA-GOx was highlighted by a standard assay on Petri dishes employing Micrococcus lysodeikticus cell walls. The findings from this study have implications for future investigations related to the employment of PVA-GOx system as a composite material of pharmaceutical and technological interest. (c) 2013 Wiley Periodicals, Inc. Biopolymers 101: 461-470, 2014.

Development and Characterization of a Novel Bioactive Polymer with Antibacterial and Lysozyme-Like Activity

Stabili Loredana
2014

Abstract

The development and characterization of a novel bioactive polymer based on the immobilization of glucose oxidase enzyme (GOx) in a polyvinyl alcohol (PVA) film showing antibacterial activity is presented. The PVA-GOx composite material was extensively characterized by UV-vis, X-ray Photoelectron (XPS) spectroscopy and by Fourier Transform Infrared (FTIR) spectroscopy to verify the preservation of enzyme structural integrity and activity. The antimicrobial activity of this composite material against Escherichia coli and Vibrio alginolyticus was assessed. Furthermore the lysozyme-like activity of PVA-GOx was highlighted by a standard assay on Petri dishes employing Micrococcus lysodeikticus cell walls. The findings from this study have implications for future investigations related to the employment of PVA-GOx system as a composite material of pharmaceutical and technological interest. (c) 2013 Wiley Periodicals, Inc. Biopolymers 101: 461-470, 2014.
2014
Istituto per l'Ambiente Marino Costiero - IAMC - Sede Napoli
antibacterial
glucose oxidase
lysozyme-like activity
polyvinyl alcohol
XPS
FTIR
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/281374
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 15
social impact