Plasmonic nanostructures exhibit a variety of surface plasmon polariton (SPP) modes, with different characteristic properties. While a single metal dielectric interface supports a single-interface SPP mode, a thin metal film can support extended long range SPPs and strongly confined short range SPPs. When the coupling between the incident light and the SPP is provided through a diffraction grating, it is possible to azimuthally rotate the grating with respect to the scattering plane, introducing the possibility to propagate the SPP along an arbitrary direction. We present a theoretical and experimental analysis of the coupling conditions for long range and short range SPPs under this configuration. We also investigate the propagation length of the modes depending on the propagation direction with respect to the grating grooves, showing in particular that the long range SPP propagation length can be sensibly enhanced with respect to the null-azimuth case.

Coupled SPP Modes on 1D Plasmonic Gratings in Conical Mounting

Romanato F
2014

Abstract

Plasmonic nanostructures exhibit a variety of surface plasmon polariton (SPP) modes, with different characteristic properties. While a single metal dielectric interface supports a single-interface SPP mode, a thin metal film can support extended long range SPPs and strongly confined short range SPPs. When the coupling between the incident light and the SPP is provided through a diffraction grating, it is possible to azimuthally rotate the grating with respect to the scattering plane, introducing the possibility to propagate the SPP along an arbitrary direction. We present a theoretical and experimental analysis of the coupling conditions for long range and short range SPPs under this configuration. We also investigate the propagation length of the modes depending on the propagation direction with respect to the grating grooves, showing in particular that the long range SPP propagation length can be sensibly enhanced with respect to the null-azimuth case.
2014
Istituto Officina dei Materiali - IOM -
Plasmonic gratings
Long-range surface plasmon polaritons
Short-range surface plasmon polaritons
Conical mounting
SPP propagation
SPP radiative losses
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/282108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact