We study the effect of low-frequency noise in ac-driven two- or many-level coherent nanodevices. Fluctuations in the properties of the device are translated into equivalent fluctuations of the driving fields. The impact on Rabi oscillations can be modulated with the detuning and minimized at resonance. In three-level atoms slow noise produces qualitative changes for protocols as coherent population transfer. We propose a strategy allowing us to operate at parity symmetry points, where the device is well protected against noise, despite selection rules preventing direct couplings to external fields of involved transitions.
Effects of low-frequency noise in driven coherent nanodevices
Falci G;Paladino E
2012
Abstract
We study the effect of low-frequency noise in ac-driven two- or many-level coherent nanodevices. Fluctuations in the properties of the device are translated into equivalent fluctuations of the driving fields. The impact on Rabi oscillations can be modulated with the detuning and minimized at resonance. In three-level atoms slow noise produces qualitative changes for protocols as coherent population transfer. We propose a strategy allowing us to operate at parity symmetry points, where the device is well protected against noise, despite selection rules preventing direct couplings to external fields of involved transitions.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


