In this work we studied the accuracy of a non-linear fitting procedure, based on the Levenberg-Marquardt algorithm, for time-resolved measurements to retrieve the absorption and the reduced scattering coefficients of an absorbing diffusive medium. This procedure is suitable for retrieving optical properties in a wider range of situations (e.g. solid samples, reflectance geometry), with respect to the linear inversion procedures recently presented for both CW and time domain measurements. By means of both analytical and numerical (Monte Carlo) simulations, we quantified the influence of photon counts, temporal sampling, analytical model, background and instrument response function on the accuracy in the estimation of the optical properties. Also a new analytical model to describe light propagation in diffusive media based on the Radiative Transport Equation has been considered. The main source of error that affects the accuracy of the absorption and reduced scattering coefficients retrieved by the non-linear procedure appears to be the analytical model adopted in the inversion procedure. © 2009 SPIE.

Accuracy of the nonlinear fitting procedure for time-resolved measurements on diffusive phantoms at NIR wavelengths

Spinelli Lorenzo;Farina Andrea;Pifferi Antonio;Cubeddu Rinaldo;
2009

Abstract

In this work we studied the accuracy of a non-linear fitting procedure, based on the Levenberg-Marquardt algorithm, for time-resolved measurements to retrieve the absorption and the reduced scattering coefficients of an absorbing diffusive medium. This procedure is suitable for retrieving optical properties in a wider range of situations (e.g. solid samples, reflectance geometry), with respect to the linear inversion procedures recently presented for both CW and time domain measurements. By means of both analytical and numerical (Monte Carlo) simulations, we quantified the influence of photon counts, temporal sampling, analytical model, background and instrument response function on the accuracy in the estimation of the optical properties. Also a new analytical model to describe light propagation in diffusive media based on the Radiative Transport Equation has been considered. The main source of error that affects the accuracy of the absorption and reduced scattering coefficients retrieved by the non-linear procedure appears to be the analytical model adopted in the inversion procedure. © 2009 SPIE.
2009
Medical optics instrumentation
Photon migration
Spectroscopy
tissue diagnostics
Turbid media
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/282324
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 7
social impact