Cardiac diagnostic or therapeutic testing is an essential tool for diagnosis and treatment of cardiovascular disease, but it also involves considerable exposure to ionizing radiation. Every exposure produces a corresponding increase in cancer risk, and risks are highest for radiation exposure during infancy and adolescence. Recent studies on chromosomal biomarkers corroborate the current radioprotection assumption showing that even modest radiation load due to cardiac catheter-based fluoroscopic procedures can damage the DNA of the cell. In this article, we review the biological and clinical risks of cardiac imaging employing ionizing radiation. We also discuss the perspectives offered by the use of molecular biomarkers in order to better assess the long-term development of health effects.
Health Risk and Biological Effects of Cardiac Ionising Imaging: From Epidemiology to Genes
Foffa Ilenia;
2009
Abstract
Cardiac diagnostic or therapeutic testing is an essential tool for diagnosis and treatment of cardiovascular disease, but it also involves considerable exposure to ionizing radiation. Every exposure produces a corresponding increase in cancer risk, and risks are highest for radiation exposure during infancy and adolescence. Recent studies on chromosomal biomarkers corroborate the current radioprotection assumption showing that even modest radiation load due to cardiac catheter-based fluoroscopic procedures can damage the DNA of the cell. In this article, we review the biological and clinical risks of cardiac imaging employing ionizing radiation. We also discuss the perspectives offered by the use of molecular biomarkers in order to better assess the long-term development of health effects.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


