Data fragmentation and allocation in distributed and parallel Database Management Systems (DBMS) have been extensively studied in the past. Previous work tackled these two problems separately even though they are dependent on each other. We recently developed a combined algorithm that handles the dependency issue between fragmentation and allocation. A novel genetic solution was developed for tins problem. The main issue of this solution and previous solutions is the lack of real life verifications of these models. This paper addresses this gap by verifying the effectiveness of our previous genetic solution on the Teradata DBMS. Teradata is a shared nothing DBMS with proven scalability and robustness in real life user environments as big as 10's of petabytes of relational data. Experiments are conducted for the genetic solution and previous work using the SSB benchmark (TPC-H like) on a Teradata appliance running TD 13.10. Results show that the genetic solution is faster than previous work by a 38%.

Verification of Partitioning and Allocation Techniques on Teradata DBMS

Cuzzocrea Alfredo
2011

Abstract

Data fragmentation and allocation in distributed and parallel Database Management Systems (DBMS) have been extensively studied in the past. Previous work tackled these two problems separately even though they are dependent on each other. We recently developed a combined algorithm that handles the dependency issue between fragmentation and allocation. A novel genetic solution was developed for tins problem. The main issue of this solution and previous solutions is the lack of real life verifications of these models. This paper addresses this gap by verifying the effectiveness of our previous genetic solution on the Teradata DBMS. Teradata is a shared nothing DBMS with proven scalability and robustness in real life user environments as big as 10's of petabytes of relational data. Experiments are conducted for the genetic solution and previous work using the SSB benchmark (TPC-H like) on a Teradata appliance running TD 13.10. Results show that the genetic solution is faster than previous work by a 38%.
2011
978-3-642-24649-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/282733
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 6
social impact