(-)-Kainic acid potently increases stretch-induced afferent firing in muscle spindles, probably acting through a hitherto uncloned phospholipase D (PLD)-coupled mGlu receptor. Structural modification of (-)-kainic acid was undertaken to explore the C-4 substituent effect on the pharmacology related to muscle spindle firing. Three analogues 1a-c were synthesised by highly stereoselective additions of a CF3, a hydride and an alkynyl group to the Re face of the key pyrrolidin-4-one intermediate 5a followed by further structural modifications. Only the 4-(1,2,3-triazolyl)-kainate derivative 1c retained the kainate-like agonism, increasing firing in a dose-dependent manner. Further modification of 1c by introduction of a PEG-biotin chain on the 1,2,3-triazole fragment afforded compound 14 which retained robust agonism at 1 mu M and appears to be suitable for future use in pull-down assays and far western blotting for PLD-mGluR isolation.

Synthesis and biological evaluation of (-)-kainic acid analogues as phospholipase D-coupled metabotropic glutamate receptor ligands

Zanda Matteo
2014

Abstract

(-)-Kainic acid potently increases stretch-induced afferent firing in muscle spindles, probably acting through a hitherto uncloned phospholipase D (PLD)-coupled mGlu receptor. Structural modification of (-)-kainic acid was undertaken to explore the C-4 substituent effect on the pharmacology related to muscle spindle firing. Three analogues 1a-c were synthesised by highly stereoselective additions of a CF3, a hydride and an alkynyl group to the Re face of the key pyrrolidin-4-one intermediate 5a followed by further structural modifications. Only the 4-(1,2,3-triazolyl)-kainate derivative 1c retained the kainate-like agonism, increasing firing in a dose-dependent manner. Further modification of 1c by introduction of a PEG-biotin chain on the 1,2,3-triazole fragment afforded compound 14 which retained robust agonism at 1 mu M and appears to be suitable for future use in pull-down assays and far western blotting for PLD-mGluR isolation.
2014
Istituto di Chimica del Riconoscimento Molecolare - ICRM - Sede Milano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/282975
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 11
social impact