Steel with yield strengths below about 900 MPa are essentially immune to hydrogen embrittlement, and almost all pipeline steels have a yield strength below that value. However, same catastrophic failures of pipelines have been reported. Under mechanical stress these failures are due to the local formation of high-hardness martensite (hard spot) during cooling and from the presence of absorbed hydrogen developed under cathodic over-protection. This paper describes a photoelectrochemical, micrographic and fractographic study of the effect of an heat-affected zone (hard spot) on hydrogen permeation and the embrittlement of an API 5L STD X60 steel.

Effect of the heat-affected zones on hydrogen permeation and embrittlement of low-carbon steels

Maffi S;
1998

Abstract

Steel with yield strengths below about 900 MPa are essentially immune to hydrogen embrittlement, and almost all pipeline steels have a yield strength below that value. However, same catastrophic failures of pipelines have been reported. Under mechanical stress these failures are due to the local formation of high-hardness martensite (hard spot) during cooling and from the presence of absorbed hydrogen developed under cathodic over-protection. This paper describes a photoelectrochemical, micrographic and fractographic study of the effect of an heat-affected zone (hard spot) on hydrogen permeation and the embrittlement of an API 5L STD X60 steel.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/283716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact