We investigate in detail the optical response of dense split ring resonator (SRR) arrays as a function of their thickness, for normally impinging light in the VIS-NIR spectral range. We find that, for sufficiently tall SRRs, several vertical Fabry-Perot resonances can be excited, which may interact with the well-known horizontal SRR resonant paths. Furthermore, we analyze the possibility to exploit these nanostructures to detect bio-chemical quantities. In particular, we find that the coexistence of vertical and horizontal resonances yields an increased sensitivity. Well ordered, large arrays of thick SRRs are obtained by exploiting a fabrication process based on X-Ray Lithography. A very good agreement is found between numerical and measured transmittances. A preliminary detection test evidences the potential of this geometry as a sensing platform. (C) 2014 Optical Society of America

Resonance properties of thick plasmonic split ring resonators for sensing applications

Giorgis Valentina;Romanato Filippo
2014

Abstract

We investigate in detail the optical response of dense split ring resonator (SRR) arrays as a function of their thickness, for normally impinging light in the VIS-NIR spectral range. We find that, for sufficiently tall SRRs, several vertical Fabry-Perot resonances can be excited, which may interact with the well-known horizontal SRR resonant paths. Furthermore, we analyze the possibility to exploit these nanostructures to detect bio-chemical quantities. In particular, we find that the coexistence of vertical and horizontal resonances yields an increased sensitivity. Well ordered, large arrays of thick SRRs are obtained by exploiting a fabrication process based on X-Ray Lithography. A very good agreement is found between numerical and measured transmittances. A preliminary detection test evidences the potential of this geometry as a sensing platform. (C) 2014 Optical Society of America
2014
Istituto Officina dei Materiali - IOM -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/283981
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 7
social impact