In this paper we present the fabrication of multiple, large arrays of nano-metric split ring resonators, having variable aspect ratio, in order to obtain a sample suitable for prism-free plasmonic sensing applications. It has been shown that high aspect ratio structures present a richer longitudinal plasmonic resonant response, compared to thin geometries. In order to produce a platform suitable also for parallel measurements, the split ring resonators were arranged in ten square arrays, having an area of 1 x 1 mm, over a surface area of 12 x 18 mm. To obtain this result, we developed a fabrication process based on X-ray lithography. The choice of X-ray lithography as the main technique is justified by the possibility to obtain higher aspect ratio and to achieve large areas arrays of nano-structures in a single, fast exposure, compared to other techniques, such as Nanoimprint Lithography or Electron Beam Lithography. A new X-ray mask design was developed for achieving the ten large chips design. The fabricated split ring resonator arrays have been characterized by ellipsometric transmittance measurements in the visible and near-infrared range. The strong dependence of the split ring resonant response to the polarization of the impinging light, has been exploited to perform a test of the detection properties of the structure, functionalized with a mono-layer of self assembled dodecanethiols. The encouraging results of the detection test indicate the SRR geometry as a promising sensing structure. (C) 2014 Elsevier B.V. All rights reserved.

Fabrication of multiple large arrays of split ring resonators by X-ray lithographic process for sensing purposes

Giorgis V;Romanato F
2014

Abstract

In this paper we present the fabrication of multiple, large arrays of nano-metric split ring resonators, having variable aspect ratio, in order to obtain a sample suitable for prism-free plasmonic sensing applications. It has been shown that high aspect ratio structures present a richer longitudinal plasmonic resonant response, compared to thin geometries. In order to produce a platform suitable also for parallel measurements, the split ring resonators were arranged in ten square arrays, having an area of 1 x 1 mm, over a surface area of 12 x 18 mm. To obtain this result, we developed a fabrication process based on X-ray lithography. The choice of X-ray lithography as the main technique is justified by the possibility to obtain higher aspect ratio and to achieve large areas arrays of nano-structures in a single, fast exposure, compared to other techniques, such as Nanoimprint Lithography or Electron Beam Lithography. A new X-ray mask design was developed for achieving the ten large chips design. The fabricated split ring resonator arrays have been characterized by ellipsometric transmittance measurements in the visible and near-infrared range. The strong dependence of the split ring resonant response to the polarization of the impinging light, has been exploited to perform a test of the detection properties of the structure, functionalized with a mono-layer of self assembled dodecanethiols. The encouraging results of the detection test indicate the SRR geometry as a promising sensing structure. (C) 2014 Elsevier B.V. All rights reserved.
2014
Istituto Officina dei Materiali - IOM -
Nanofabrication
X-ray lithography
Plasmonics
Sensing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/284919
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact