Given a directed social graph and a set of past informa- tion cascades observed over the graph, we study the novel problem of detecting modules of the graph (communities of nodes), that also explain the cascades. Our key observation is that both information propagation and social ties forma- tion in a social network can be explained according to the same latent factor, which ultimately guide a user behavior within the network. Based on this observation, we propose the Community-Cascade Network (CCN) model, a stochas- tic mixture membership generative model that can fit, at the same time, the social graph and the observed set of cas- cades. Our model produces overlapping communities and for each node, its level of authority and passive interest in each community it belongs. For learning the parameters of the CCN model, we devise a Generalized Expectation Maximization procedure. We then apply our model to real-world social networks and in- formation cascades: the results witness the validity of the proposed CCN model, providing useful insights on its signif- icance for analyzing social behavior. © 2013 ACM.

Cascade-based community detection

Manco G
2013

Abstract

Given a directed social graph and a set of past informa- tion cascades observed over the graph, we study the novel problem of detecting modules of the graph (communities of nodes), that also explain the cascades. Our key observation is that both information propagation and social ties forma- tion in a social network can be explained according to the same latent factor, which ultimately guide a user behavior within the network. Based on this observation, we propose the Community-Cascade Network (CCN) model, a stochas- tic mixture membership generative model that can fit, at the same time, the social graph and the observed set of cas- cades. Our model produces overlapping communities and for each node, its level of authority and passive interest in each community it belongs. For learning the parameters of the CCN model, we devise a Generalized Expectation Maximization procedure. We then apply our model to real-world social networks and in- formation cascades: the results witness the validity of the proposed CCN model, providing useful insights on its signif- icance for analyzing social behavior. © 2013 ACM.
2013
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
community detection
information cascades
social networks
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/285777
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? ND
social impact