This paper proposes a neural based full-order Luenberger adaptive speed observer for sensorless linear induction motor (LIM) drives, where the linear speed is estimated with the total least squares (TLS) EXIN neuron. A novel state space-vector representation of the LIM has been deduced, taking into consideration its dynamic end effects. The state equations of the LIM have been rearranged into a matrix form to be solved, in terms of the LIM linear speed, by any least squares technique. The TLS EXIN neuron has been used to compute online, in recursive form, the machine linear speed. A new gain matrix choice of the Luenberger observer, specifically taking into consideration the LIM dynamic end effects, has been proposed, overcoming the limits of the gain matrix choice based on the rotating-induction-machine model. The proposed TLS full-order Luenberger adaptive speed observer has been tested experimentally on an experimental rig. Results have been compared with those achievable with the TLS EXIN MRAS, the classic MRAS, and the sliding-mode MRAS observers. © 2014 IEEE.

Neural sensorless control of linear induction motors by a full-order luenberger observer considering the end effects

Accetta A;Pucci M;Vitale G
2014

Abstract

This paper proposes a neural based full-order Luenberger adaptive speed observer for sensorless linear induction motor (LIM) drives, where the linear speed is estimated with the total least squares (TLS) EXIN neuron. A novel state space-vector representation of the LIM has been deduced, taking into consideration its dynamic end effects. The state equations of the LIM have been rearranged into a matrix form to be solved, in terms of the LIM linear speed, by any least squares technique. The TLS EXIN neuron has been used to compute online, in recursive form, the machine linear speed. A new gain matrix choice of the Luenberger observer, specifically taking into consideration the LIM dynamic end effects, has been proposed, overcoming the limits of the gain matrix choice based on the rotating-induction-machine model. The proposed TLS full-order Luenberger adaptive speed observer has been tested experimentally on an experimental rig. Results have been compared with those achievable with the TLS EXIN MRAS, the classic MRAS, and the sliding-mode MRAS observers. © 2014 IEEE.
2014
Istituto di Studi sui Sistemi Intelligenti per l'Automazione - ISSIA - Sede Bari
End effects
Linear Induction Motor (LIM)
Luenberger Observer
Neural Networks
State Model
Total Least-Squares
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/285795
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 105
  • ???jsp.display-item.citation.isi??? 80
social impact