Shape recognition methods are often based on feature comparison. When features are of different natures, combining the value of distances or (dis-)similarity measures is not easy since each feature has its own amount of variability. Statistical models are therefore needed. This article proposes a statistical method, namely an a contrario method, to merge features derived from several families of size functions. This merging is usually achieved through a touchy normalizing of the distances. The proposed model consists in building a probability measure. It leads to a global shape recognition method dedicated to perceptual similarities. © Springer-Verlag Berlin Heidelberg 2006.

Shape recognition via an a contrario model for size functions

Cerri Andrea;Giorgi Daniela;
2006

Abstract

Shape recognition methods are often based on feature comparison. When features are of different natures, combining the value of distances or (dis-)similarity measures is not easy since each feature has its own amount of variability. Statistical models are therefore needed. This article proposes a statistical method, namely an a contrario method, to merge features derived from several families of size functions. This merging is usually achieved through a touchy normalizing of the distances. The proposed model consists in building a probability measure. It leads to a global shape recognition method dedicated to perceptual similarities. © Springer-Verlag Berlin Heidelberg 2006.
2006
978-3-540-44894-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/286113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact