We discuss how the topological charge of an OAM-carrying plasmon (Plasmonic Vortex) can be probed by monitoring the near-field response of plasmonic nanostructures suitably arranged inside a Plasmonic Vortex Lens. The turning "on" or "off" of four gold nanorods, detected by a Scanning Near field Optical Microscope (SNOM), acts as a fingerprint of the OAM state of the PV at the nanoscale. Different configurations are studied numerically, the integrated structure is fabricated and near field characterization is performed for a particularly meaningful case.

Sub-wavelength confinement of the orbital angular momentum of light probed by plasmonic nanorods resonances Autori:

Giorgis V;Romanato F
2014

Abstract

We discuss how the topological charge of an OAM-carrying plasmon (Plasmonic Vortex) can be probed by monitoring the near-field response of plasmonic nanostructures suitably arranged inside a Plasmonic Vortex Lens. The turning "on" or "off" of four gold nanorods, detected by a Scanning Near field Optical Microscope (SNOM), acts as a fingerprint of the OAM state of the PV at the nanoscale. Different configurations are studied numerically, the integrated structure is fabricated and near field characterization is performed for a particularly meaningful case.
2014
Istituto Officina dei Materiali - IOM -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/286945
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 13
social impact