We report on the development of a novel class of nanowire-based THz detectors in which the field effect transistor (FET) is integrated in a narrow-band antenna. When the THz field is applied between the gate and the source terminals of the FET, a constant source-to-drain photovoltage appears as a result of the non-linear transfer characteristic of the transistor. In order to achieve attoFarad-order capacitance we fabricate lateral gate FET with gate widths smaller than 100 nm. Our devices show a maximum responsivity of 110 V/W without amplification, with noise equivalent power levels <= 1 nW/root Hz at room temperature. The 0.3 THz resonant antenna has bandwidth of similar to 10 GHz and opens a path to novel applications of our technology including metrology, spectroscopy, homeland security, biomedical and pharmaceutical applications. Moreover the possibility to extend this approach to relatively large multi-pixel arrays coupled with THz sources makes it highly appealing for a future generation of THz detectors.

High-performance room-temperature THz nanodetectors with a narrowband antenna

Viti Leonardo;Ercolani Daniele;Sorba Lucia;Vitiello Miriam S
2014

Abstract

We report on the development of a novel class of nanowire-based THz detectors in which the field effect transistor (FET) is integrated in a narrow-band antenna. When the THz field is applied between the gate and the source terminals of the FET, a constant source-to-drain photovoltage appears as a result of the non-linear transfer characteristic of the transistor. In order to achieve attoFarad-order capacitance we fabricate lateral gate FET with gate widths smaller than 100 nm. Our devices show a maximum responsivity of 110 V/W without amplification, with noise equivalent power levels <= 1 nW/root Hz at room temperature. The 0.3 THz resonant antenna has bandwidth of similar to 10 GHz and opens a path to novel applications of our technology including metrology, spectroscopy, homeland security, biomedical and pharmaceutical applications. Moreover the possibility to extend this approach to relatively large multi-pixel arrays coupled with THz sources makes it highly appealing for a future generation of THz detectors.
2014
Istituto Nanoscienze - NANO
Nanowire
field-effect transistor
THz
detector
antenna
responsivity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/286987
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact