This paper reports the results of the treatment of a yarn dyeing effluent using an integrated biological-chemical oxidation process. In particular, the biological unit was based on a sequencing batch biofilter granular sludge reactor (SBBGR), while the chemical treatment consisted of an ozonation step. Biological treatment alone was first performed as a reference for comparison. While biological treatment did not produce an effluent for direct discharge, the integrated process assured good treatment results, with satisfactory removal of chemical oxygen demand (up to 89.8 %), total nitrogen (up to 88.2 %), surfactants (up to 90.7 %) and colour (up to 99 %), with an ozone dose of 110 mg of ozone per litre of wastewater. Biomass characterization by fluorescence in situ hybridization has revealed that filamentous bacteria represented about 20 % of biomass (coherently with high sludge volume index values); thanks to its special design, SBBGR guaranteed, however, stable treatment performances and low effluent suspended solids concentrations, while conventional activated sludge systems suffer from sludge bulking and even treatment failure in such a condition. Furthermore, biomass characterization has evidenced the presence of a shortcut nitrification-denitrification process. © 2013 Islamic Azad University (IAU).

On-site treatment of textile yarn dyeing effluents using an integrated biological-chemical oxidation process

De Sanctis M;Rossetti S;Lopez A;Di Iaconi C
2014

Abstract

This paper reports the results of the treatment of a yarn dyeing effluent using an integrated biological-chemical oxidation process. In particular, the biological unit was based on a sequencing batch biofilter granular sludge reactor (SBBGR), while the chemical treatment consisted of an ozonation step. Biological treatment alone was first performed as a reference for comparison. While biological treatment did not produce an effluent for direct discharge, the integrated process assured good treatment results, with satisfactory removal of chemical oxygen demand (up to 89.8 %), total nitrogen (up to 88.2 %), surfactants (up to 90.7 %) and colour (up to 99 %), with an ozone dose of 110 mg of ozone per litre of wastewater. Biomass characterization by fluorescence in situ hybridization has revealed that filamentous bacteria represented about 20 % of biomass (coherently with high sludge volume index values); thanks to its special design, SBBGR guaranteed, however, stable treatment performances and low effluent suspended solids concentrations, while conventional activated sludge systems suffer from sludge bulking and even treatment failure in such a condition. Furthermore, biomass characterization has evidenced the presence of a shortcut nitrification-denitrification process. © 2013 Islamic Azad University (IAU).
2014
Istituto di Ricerca Sulle Acque - IRSA
Biological treatment
Biomass characterization
Integrated treatment
Ozonation
Yarn dyeing wastewater
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/287288
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact