The effect of steam on the micro-phase structure and mechanical properties of different block copolymers used in biomedical devices is investigated via FT-IR, tensile tests and dynamic mechanical analysis (DMA). Steam sterilization, commonly performed on medical devices and simulated in this work, affects the copolymers' morphology, due to high temperature and humidity conditions. FT-IR analysis reveals that steam induces a modification in the crystalline conformations of copolymers with a pre-existing hydrogen bonding network, that is, thermoplastic polyurethanes (TPU) and poly(ether-block-amide) (PEBA), while it does not significantly affect the domain conformation in styrenic block copolymers (SEBS), due to weak interaction with water. As a consequence, relevant changes of the mechanical properties, closely related to the microdomain structure, are found for TPU and PEBA after sterilization, while SEBS mechanical behavior remains stable, as demonstrated by tensile tests and DMA results. For this reason, SEBS is suggested as the best choice in terms of durability in biomedical applications. (C) 2014 Wiley Periodicals, Inc.

Effect of Steam on Structure and Mechanical Properties of Biomedical Block Copolymers

Pace G;
2014

Abstract

The effect of steam on the micro-phase structure and mechanical properties of different block copolymers used in biomedical devices is investigated via FT-IR, tensile tests and dynamic mechanical analysis (DMA). Steam sterilization, commonly performed on medical devices and simulated in this work, affects the copolymers' morphology, due to high temperature and humidity conditions. FT-IR analysis reveals that steam induces a modification in the crystalline conformations of copolymers with a pre-existing hydrogen bonding network, that is, thermoplastic polyurethanes (TPU) and poly(ether-block-amide) (PEBA), while it does not significantly affect the domain conformation in styrenic block copolymers (SEBS), due to weak interaction with water. As a consequence, relevant changes of the mechanical properties, closely related to the microdomain structure, are found for TPU and PEBA after sterilization, while SEBS mechanical behavior remains stable, as demonstrated by tensile tests and DMA results. For this reason, SEBS is suggested as the best choice in terms of durability in biomedical applications. (C) 2014 Wiley Periodicals, Inc.
2014
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
biomedical application
block copolymers
FT-IR
mechanical properties
PEBA
SEBS
steam sterilization
TPU
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/287431
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact