Among the metal oxide semiconductors, ZnO has been widely investigated as a channel material in thin-film transistors (TFTs) due to its excellent electrical properties, optical transparency and simple fabrication Via solution-processed techniques. Herein, we report a solution-processable ZnO-based thin-film transistor gated through a liquid electrolyte with an ionic strength comparable to that of a physiological fluid. The surface morphology and chemical composition of the ZnO films upon exposure to water and phosphate-buffered saline (PBS) are discussed in terms of the operation stability and electrical performance of the ZnO TFT devices. The improved device characteristics upon exposure to PBS are associated with the enhancement of the oxygen vacancies in the ZnO lattice due to Na+ doping. Moreover, the dissolution kinetics of the ZnO thin film in a liquid electrolyte opens the possible applicability of these devices as an active element in "transient" implantable systems.

Bio-sorbable, liquid electrolyte gated thin-film transistor based on a solution-processed zinc oxide layer

Di Franco Cinzia;Santacroce Maria Vittoria;
2014

Abstract

Among the metal oxide semiconductors, ZnO has been widely investigated as a channel material in thin-film transistors (TFTs) due to its excellent electrical properties, optical transparency and simple fabrication Via solution-processed techniques. Herein, we report a solution-processable ZnO-based thin-film transistor gated through a liquid electrolyte with an ionic strength comparable to that of a physiological fluid. The surface morphology and chemical composition of the ZnO films upon exposure to water and phosphate-buffered saline (PBS) are discussed in terms of the operation stability and electrical performance of the ZnO TFT devices. The improved device characteristics upon exposure to PBS are associated with the enhancement of the oxygen vacancies in the ZnO lattice due to Na+ doping. Moreover, the dissolution kinetics of the ZnO thin film in a liquid electrolyte opens the possible applicability of these devices as an active element in "transient" implantable systems.
2014
Istituto di Nanotecnologia - NANOTEC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/287784
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact