We consider a peer-assisted Video-on-demand system, in which video distribution is supported both by peers caching the whole video and by peers concurrently downloading it. We propose a stochastic fluid framework that allows to characterize the additional bandwidth requested from the servers to satisfy all users watching a given video. We obtain analytical upper bounds to the server bandwidth needed in the case in which users download the video content sequentially. We also present a methodology to obtain exact solutions for special cases of peer upload bandwidth distribution. Our bounds permit to tightly characterize the performance of peer-assisted VoD systems as the number of users increases, for both sequential and non-sequential delivery schemes. In particular, we rigorously prove that the simple sequential scheme is asymptotically optimal both in the bandwidth surplus and in the bandwidth deficit mode, and that peer-assisted systems become totally self-sustaining in the surplus mode as the number of users grows large.

Stochastic Analysis of Self-Sustainability in Peer-Assisted VoD Systems

Torrisi Giovanni Luca
2012

Abstract

We consider a peer-assisted Video-on-demand system, in which video distribution is supported both by peers caching the whole video and by peers concurrently downloading it. We propose a stochastic fluid framework that allows to characterize the additional bandwidth requested from the servers to satisfy all users watching a given video. We obtain analytical upper bounds to the server bandwidth needed in the case in which users download the video content sequentially. We also present a methodology to obtain exact solutions for special cases of peer upload bandwidth distribution. Our bounds permit to tightly characterize the performance of peer-assisted VoD systems as the number of users increases, for both sequential and non-sequential delivery schemes. In particular, we rigorously prove that the simple sequential scheme is asymptotically optimal both in the bandwidth surplus and in the bandwidth deficit mode, and that peer-assisted systems become totally self-sustaining in the surplus mode as the number of users grows large.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/287841
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact