Bio-inspired apatite nanoparticles precipitated in the presence of citrate ions at increasing maturation times are characterized in terms of structure, size, morphology, and composition through advanced X-ray total scattering techniques. The origin of the platy crystal morphology, breaking the hexagonal symmetry, and the role ofcitrate ions is explored. By cross-coupling the size and shape information of crystal domains with those obtained by atomic force microscopy on multidomain nanoparticles, a plausible mechanism underlying the amorphous-to-crystal transformation is reconstructed. In the present study, citrate plays the distinct roles of inducing the platy morphology of the amorphous precursor and controlling the thickness of the Ca-deficient apatite nanocrystals. These findings can open new scenarios also in bone mineralization, where citrate might have a broader role to play than has been thought to date.

Crystal Size, Morphology, and Growth Mechanism in Bio-Inspired Apatite Nanocrystals

Frison Ruggero;Guagliardi Antonietta;
2014

Abstract

Bio-inspired apatite nanoparticles precipitated in the presence of citrate ions at increasing maturation times are characterized in terms of structure, size, morphology, and composition through advanced X-ray total scattering techniques. The origin of the platy crystal morphology, breaking the hexagonal symmetry, and the role ofcitrate ions is explored. By cross-coupling the size and shape information of crystal domains with those obtained by atomic force microscopy on multidomain nanoparticles, a plausible mechanism underlying the amorphous-to-crystal transformation is reconstructed. In the present study, citrate plays the distinct roles of inducing the platy morphology of the amorphous precursor and controlling the thickness of the Ca-deficient apatite nanocrystals. These findings can open new scenarios also in bone mineralization, where citrate might have a broader role to play than has been thought to date.
2014
Istituto di Cristallografia - IC
biomimetic apatites
crystal growth
total scattering methods
atomic force microscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/288733
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact