We study by means of the infrared bending vibrational mode the microscopic mechanisms that are at the base of protein irreversible denaturation. In particular, we follow the thermal evolution of the Amide I and II vibrational modes of lysozyme residuals from ambient temperature toward the temperature of irreversible unfolding. Our results indicate that the thermal changes of the coupling, by means of the hydrogen bond, between hydration water molecules and the different chemical groups of the protein are the main microscopic mechanisms underlying the unfolding process. (C) 2014 Elsevier B.V. All rights reserved.
The protein irreversible denaturation studied by means of the bending vibrational mode
Vasi Cirino;
2014
Abstract
We study by means of the infrared bending vibrational mode the microscopic mechanisms that are at the base of protein irreversible denaturation. In particular, we follow the thermal evolution of the Amide I and II vibrational modes of lysozyme residuals from ambient temperature toward the temperature of irreversible unfolding. Our results indicate that the thermal changes of the coupling, by means of the hydrogen bond, between hydration water molecules and the different chemical groups of the protein are the main microscopic mechanisms underlying the unfolding process. (C) 2014 Elsevier B.V. All rights reserved.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.