The yeast DNA polymerase alpha-primase B subunit functions in initiation of DNA replication. This protein is present in two forms, of 86 and 91 kDa, and the p91 polypeptide results from cell cycle-regulated phosphorylation of p86. The B subunit present in G(1) arises by dephosphorylation of p91 while cells are exiting from mitosis, becomes phosphorylated in early S phase, and is competent and sufficient to initiate DNA replication. The B subunit transiently synthesized as a consequence of periodic transcription of the POL12 gene is phosphorylated no earlier than G(2). Phosphorylation of the B subunit does not require execution of the CDC7-dependent step and ongoing DNA synthesis. We suggest that posttranslational modifications of the B subunit might modulate the role of DNA polymerase ol primase in DNA replication.
CELL CYCLE-DEPENDENT PHOSPHORYLATION AND DEPHOSPHORYLATION OF THE YEAST DNA-POLYMERASE ALPHA-PRIMASE B-SUBUNIT
Foiani M;Liberi G;
1995
Abstract
The yeast DNA polymerase alpha-primase B subunit functions in initiation of DNA replication. This protein is present in two forms, of 86 and 91 kDa, and the p91 polypeptide results from cell cycle-regulated phosphorylation of p86. The B subunit present in G(1) arises by dephosphorylation of p91 while cells are exiting from mitosis, becomes phosphorylated in early S phase, and is competent and sufficient to initiate DNA replication. The B subunit transiently synthesized as a consequence of periodic transcription of the POL12 gene is phosphorylated no earlier than G(2). Phosphorylation of the B subunit does not require execution of the CDC7-dependent step and ongoing DNA synthesis. We suggest that posttranslational modifications of the B subunit might modulate the role of DNA polymerase ol primase in DNA replication.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


