The dynamics of an F center created by an oxygen vacancy on the TiO2(110) rutile surface has been investigated using ab initio molecular dynamics. These simulations uncover a truly complex, time-dependent behavior of fluctuating electron localization topologies in the vicinity of the oxygen vacancy. Although the two excess electrons are found to populate preferentially the second subsurface layer, they occasionally visit surface sites and also the third subsurface layer. This dynamical behavior of the excess charge explains hitherto conflicting interpretations of both theoretical findings and experimental data.

Charge Localization Dynamics Induced by Oxygen Vacancies on the TiO2(110) Surface

Camellone Matteo Farnesi;
2010

Abstract

The dynamics of an F center created by an oxygen vacancy on the TiO2(110) rutile surface has been investigated using ab initio molecular dynamics. These simulations uncover a truly complex, time-dependent behavior of fluctuating electron localization topologies in the vicinity of the oxygen vacancy. Although the two excess electrons are found to populate preferentially the second subsurface layer, they occasionally visit surface sites and also the third subsurface layer. This dynamical behavior of the excess charge explains hitherto conflicting interpretations of both theoretical findings and experimental data.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/288963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 220
  • ???jsp.display-item.citation.isi??? 205
social impact