The oxygen-transport system of two species of Antarctic fishes belonging to the family Artedidraconidae, Artedidraco orianae and Pogonophryne scotti, was thoroughly investigated. The complete amino acid sequence of the alpha and beta chains of the single hemoglobins of the two species was established. The oxygen-binding properties were also investigated, and were found not to differ significantly from those shown by blood, intact erythrocytes, and unstripped hemolysates. Both hemoglobins have unusually high oxygen affinity and display a relatively small Bohr effect; the Root effect is elicited only by organophosphates and is also reduced. Remarkably, the Hill coefficient is close to one in the whole pH range, indicating absence of cooperative oxygen binding which, in A. orianae hemoglobin, could be ascribed to the subunit heterogeneity shown upon oxygen dissociation. In comparison with the other families of the suborder Notothenioidei, the oxygen-transport system of these two species of Artedidraconidae has unique characteristics, which raise interesting questions on the mode of function of a multisubunit molecule and the relationship with cold adaptation.
The hemoglobins of the antarctic fishes Artedidraco orianae and Pogonophryne scotti - Amino acid sequence, lack of cooperativity, and ligand binding properties
Tamburrini M;Carratore V;di Prisco G
1998
Abstract
The oxygen-transport system of two species of Antarctic fishes belonging to the family Artedidraconidae, Artedidraco orianae and Pogonophryne scotti, was thoroughly investigated. The complete amino acid sequence of the alpha and beta chains of the single hemoglobins of the two species was established. The oxygen-binding properties were also investigated, and were found not to differ significantly from those shown by blood, intact erythrocytes, and unstripped hemolysates. Both hemoglobins have unusually high oxygen affinity and display a relatively small Bohr effect; the Root effect is elicited only by organophosphates and is also reduced. Remarkably, the Hill coefficient is close to one in the whole pH range, indicating absence of cooperative oxygen binding which, in A. orianae hemoglobin, could be ascribed to the subunit heterogeneity shown upon oxygen dissociation. In comparison with the other families of the suborder Notothenioidei, the oxygen-transport system of these two species of Artedidraconidae has unique characteristics, which raise interesting questions on the mode of function of a multisubunit molecule and the relationship with cold adaptation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


