The preparation and characterization of thin dense sulfonated poly-ether-ether-ketone with cardo group (PEEK-WC) membranes for proton exchange membrane fuel cell (PEMFC) applications are described. The sulfonation of PEEK-WC polymer was realized via chlorosulfonic acid and different kinds of membrane samples were prepared with a sulfonation degree ranging from 67 to 99%. The degree of sulfonation, homogeneity and thickness significantly affect both the membrane transport properties and the electrochemical performances. The dense character of the membranes was confirmed by SEM analysis. Proton conductivity measurements were carried out in a temperature range from 30 to 80 C and at 100% of relative humidity, reaching 5.40103 S/cm1 as best value at 80 C and with a sulfonation degree (DS) of 99%. At the same conditions, a water uptake of 17% was achieved. DSC and TGA characterizations were used in order to determine the thermal stability of the membranes, confirming a Tg ranging between 206 and 216 C depending on the DS, whereas FT-IR yielded indication about intermolecular interactions and water uptake at various sulfonation degrees.

Sulfonation of PEEK-WC polymer via chloro-sulfonic acid for potential PEM Fuel Cell applications, International Journal of Hydrogen Energy

Iulianelli A;Clarizia G;Gugliuzza A;Trotta F;Basile A
2010

Abstract

The preparation and characterization of thin dense sulfonated poly-ether-ether-ketone with cardo group (PEEK-WC) membranes for proton exchange membrane fuel cell (PEMFC) applications are described. The sulfonation of PEEK-WC polymer was realized via chlorosulfonic acid and different kinds of membrane samples were prepared with a sulfonation degree ranging from 67 to 99%. The degree of sulfonation, homogeneity and thickness significantly affect both the membrane transport properties and the electrochemical performances. The dense character of the membranes was confirmed by SEM analysis. Proton conductivity measurements were carried out in a temperature range from 30 to 80 C and at 100% of relative humidity, reaching 5.40103 S/cm1 as best value at 80 C and with a sulfonation degree (DS) of 99%. At the same conditions, a water uptake of 17% was achieved. DSC and TGA characterizations were used in order to determine the thermal stability of the membranes, confirming a Tg ranging between 206 and 216 C depending on the DS, whereas FT-IR yielded indication about intermolecular interactions and water uptake at various sulfonation degrees.
2010
Istituto per la Tecnologia delle Membrane - ITM
fuel cells
polymeric membranes
energy production
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/28944
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 31
social impact