Chiroptical properties of two-dimensional (2D) supramolecular assemblies (nanosheets) of achiral, charged pyrene trimers (Py-3) are rendered chiral by asymmetric physical perturbations. Chiral stimuli in a cuvette can originate either from controlled temperature gradients or by very gentle stirring. The chiroptical activity strongly depends on the degree of supramolecular order of the nanosheets, which is easily controlled by the method of preparation. The high degree of structural order ensures strong cooperative effects within the aggregates, rendering them more susceptible to external stimuli. The samples prepared by using slow thermal annealing protocols are both CD and LD active (in stagnant and stirred solutions), whereas for isothermally aged samples chiroptical activity was in all cases undetectable. In the case of temperature gradients, the optical activity of 2D assemblies could be recorded for a stagnant solution due to migration of the aggregates from the hottest to the coldest regions of the system. However, a considerably stronger exciton coupling, coinciding with the J-band of the interacting pyrenes, is developed upon subtle vortexing (0.5Hz, 30rpm) of the aqueous solution of the nanosheets. The sign of the exciton coupling is inverted upon switching between clockwise and counter-clockwise rotation. The supramolecular chirality is evidenced by the appearance of CD activity. To exclude artefacts from proper CD spectra, the contribution from LD to the observed CD was determined. The data suggest that the aggregates experience asymmetrical deformation and alignment effects because of the presence of chiral flows.

Hydrodynamic and Thermophoretic Effects on the Supramolecular Chirality of Pyrene-Derived Nanosheets

Micali Norberto;Mineo Placido;Villari Valentina
2015

Abstract

Chiroptical properties of two-dimensional (2D) supramolecular assemblies (nanosheets) of achiral, charged pyrene trimers (Py-3) are rendered chiral by asymmetric physical perturbations. Chiral stimuli in a cuvette can originate either from controlled temperature gradients or by very gentle stirring. The chiroptical activity strongly depends on the degree of supramolecular order of the nanosheets, which is easily controlled by the method of preparation. The high degree of structural order ensures strong cooperative effects within the aggregates, rendering them more susceptible to external stimuli. The samples prepared by using slow thermal annealing protocols are both CD and LD active (in stagnant and stirred solutions), whereas for isothermally aged samples chiroptical activity was in all cases undetectable. In the case of temperature gradients, the optical activity of 2D assemblies could be recorded for a stagnant solution due to migration of the aggregates from the hottest to the coldest regions of the system. However, a considerably stronger exciton coupling, coinciding with the J-band of the interacting pyrenes, is developed upon subtle vortexing (0.5Hz, 30rpm) of the aqueous solution of the nanosheets. The sign of the exciton coupling is inverted upon switching between clockwise and counter-clockwise rotation. The supramolecular chirality is evidenced by the appearance of CD activity. To exclude artefacts from proper CD spectra, the contribution from LD to the observed CD was determined. The data suggest that the aggregates experience asymmetrical deformation and alignment effects because of the presence of chiral flows.
2015
Istituto per i Processi Chimico-Fisici - IPCF
chirality
circular dichroism
nanosheets
polymers
pyrene
File in questo prodotto:
File Dimensione Formato  
prod_332870-doc_163920.pdf

solo utenti autorizzati

Descrizione: Hydrodynamic and Thermophoretic Effects on the Supramolecular Chirality of Pyrene-Derived Nanosheets
Tipologia: Versione Editoriale (PDF)
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/289642
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact